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Abstract

In this paper a micromechanical model of the interaction between densification mechanisms in powder compaction is
presented. It accounts for elastic and power-law creep deformation of the bulk material along with stress-driven dif-
fusion along the interparticle contact areas and curvature-driven diffusion on the pore surfaces. The finite element
method is used to obtain the time-dependent deformation of the powder aggregate under plane strain deformation
conditions. To reduce the number of case calculations needed to analyze the process, important dimensionless pa-
rameters that measure the relative magnitude of the densification mechanisms are identified. The calculated densifi-
cation rates of the compact are compared with those predicted by analytical models, and conclusions are drawn on the
significance of including the interaction between the densifying mechanisms in powder compaction models. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In powder densification the closing of porosity typically occurs by various deformation mechanisms such
as linear elasticity, rate-independent plasticity, power-law creep, diffusion along the interparticle contacts
and pore surfaces, and interparticle slip (Ashby, 1974; Swinkels and Ashby, 1981; Helle et al., 1985).

Models for the early stages of densification (when the porosity is interconnected) have been proposed in
which the single dominant mechanism is plasticity (Fleck et al., 1992; Akisanya et al., 1994; Akisanya and
Cocks, 1995; Fleck, 1995), power-law creep (Ashby, 1974; Swinkels and Ashby, 1981; Kuhn and
McMeeking, 1992; Bouvard, 1993; Storakers, 1997; Larsson et al., 1996; Storakers et al., 1997; Storakers
et al., 1999), interparticle diffusion (McMeeking and Kuhn, 1992) or interparticle slip (Casagranda and
Sofronis, 1997). Work has also been done in the area of coupling interparticle diffusion to pore surface
diffusion (Bross and Exner, 1979; Pan and Cocks, 1995; Svoboda and Riedel, 1995; Zhang and Schneibel,
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1995; Bouvard and McMeeking, 1996; Pan et al., 1997) and linear elastic deformation to surface diffusion
(Freund et al., 1993; Suo and Wang, 1994; Wang and Suo, 1997; Xia et al., 1997). An excellent overview of
diffusive processes in the context of cavitation at grain interfaces can be found in the work of Chuang et al.
(1979). Arzt and coworkers (Arzt, 1982; Arzt et al., 1983; Fishcmeister and Arzt, 1983) developed a model
for densification that takes into account the evolving particle coordination number and contact size during
densification. Subsequently, a variety of models have used their idea of isotropically evolving contact areas
to predict the macroscopic behavior of a powder compact (Helle et al., 1985; McMeeking and Kuhn, 1992).
Similarly, models for the final stages of densification (when the pores are isolated) are based on power-law
creep (Cocks, 1989; Duva and Crow, 1992; Sofronis and McMeeking, 1992), diffusional creep (Riedel et al.,
1994b, Svoboda et al., 1994) or interparticle diffusion and slip (Riedel et al., 1994a). An overview of the
analytical investigations into powder compaction can be found in the work of Cocks (1994). Significantly,
in this work, Cocks has considered the interaction between pairs of competing mechanisms in effecting the
overall compaction of the particles.

A detailed study of the concurrent action of the densifying mechanisms is an important prerequisite for
the development of densification models with predictive capabilities. In the current paper a microme-
chanical framework that captures the coupled action of most of the densification mechanisms is presented.
In the proposed model, densification begins with the initial contact between particles established by in-
stantaneous elastic deformation, and proceeds in time through combined elastic and power-law creep
deformation in the bulk coupled with diffusional mass transport on the interparticle contact areas and pore
surfaces. In order to understand the mechanics of coupling, attention is focused on the calculation of
micromechanical parameters such as volumetric flux distribution along the interparticle contact areas and
pore surface, and pore shape evolution during densification. The modeling of the bulk of the particles as
elastic and creeping, and the monitoring of the contact evolution between particles are points of departure
from some of the previous models (e.g., Bross and Exner, 1979; McMeeking and Kuhn, 1992; Svoboda and
Riedel, 1995; Zhang and Schneibel, 1995; Bouvard and McMeeking, 1996) that dealt with interparticle and
pore surface diffusion under the assumption of rigid particles. Another important ingredient in the present
model is the enforcement of the classical Laplace relationship between the pore curvature, energy of the
pore surface, and the normal stresses in the adjoining bulk material (Herring, 1951; Rice and Chuang, 1981;
Freund et al., 1993).

In the numerical calculations, the problem of densification of a square array of cylinders under hy-
drostatic loading is considered in order to simulate hot isostatic pressing (HIPing). Pure HIPing was
considered solely to reduce the degree of numerical complexity that would arise from interparticle slip if the
applied macroscopic stress had a non-zero deviatoric component. A small-displacement formulation is used
to describe the deformation of the compact. Of course, the validity of such an approach is limited to small
geometry changes of the aggregate. Thus, a finite element formulation with no nodal updating is developed
and implemented in a unit cell to solve the relevant initial boundary value problem under plane strain
conditions. The proposed numerical scheme is marched in time in order to capture the evolution of the
densification process. It should be emphasized that the formulation developed in this work is equally valid
for general loading states, though an appropriate unit cell has to be chosen to accommodate the applied
stresses and suitable modifications to the governing equations have to be made to account for interparticle
slip (Needleman and Rice, 1980; Casagranda and Sofronis, 1997).

2. Material constitutive laws

The total strain rate is defined through the velocity as &; = (v;; + v;,;)/2, where (-) ; = 9(-)/0x; and the
superposed dot denotes differentiation with respect to time, and is decomposed into an elastic component
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&, and a creep component &; such that &; = & + &,. The elasticity of the particle is characterized by the
standard Hooke’s law

0ij = Ciuey, (1)

where C;; are the components of the isotropic elastic modulus tensor, and the Einstein summation con-
vention is implied over a repeated index. The creep strain rate &, which obeys incompressibility, is given by
the standard power-law creep relationship

8; = 3C0271S,'j/27 (2)

where g, = /3s;s;;/2 is the effective stress, s; = 0;; — (g /3)d;; is the deviatoric stress, » is the creep ex-
ponent, C = &y/0j is the creep modulus, & and g, are material parameters in the uniaxial tension relation
¢/é = (a/a0)", and J;; is the Kronecker delta.

Diffusion along the interparticle contact areas or the pore surface is driven by chemical potential gra-
dients (Herring, 1951) such that

jb = @b dO'n/dS (3)
along the interparticle area, and
Jp = @pd(ypk)/ds 4)

along the pore surface. Here, j, and j, are the volumetric fluxes per unit length along a direction s tan-
gential to the interparticle and the pore surface areas respectively (see Fig. 1a and b), 2, = D,d,Q/KT and
9, = D,0,Q/KT are correspondingly interparticle and pore surface diffusivities having dimensions of
volume divided by stress per unit time, D, and D, are the corresponding diffusion coefficients, J,, and J,, are
the corresponding effective thicknesses through which matter diffuses, o, is the stress normal to the contact
area, k and 7y, are respectively the curvature and the energy of the pore surface (Fig. la and b), Q is the
atomic volume of the diffusing species, K is Boltzmann’s constant, and 7 is the absolute temperature.

In order to describe matter conservation, let iz(s) be the normal overlapping rate that would have re-
sulted had the particles been free to penetrate into one another under the action of external load. Since the
particles in reality do not plough into each other, all the mass that would otherwise interpenetrate is as-
sumed to be transported along the contact areas by interparticle diffusion. Matter conservation along the
interparticle contact area requires

djb (S)
ds

For the calculation of h(s), consider two points on the boundaries of particles I and IT with corresponding
velocities v} and v!' (see Fig. la and Appendix A), i.e., v} and v!" are the velocities of matter on each side of
the interface that develops when the particles come into contact. Since the points are initially a distance
Ag(s) apart (Fig. 1a), the normal overlapping rate i(s) is expressed as

his) = (v1(s) = v} (5))m: + &(s) = vals) + &(s), (6)

where v, (s) is the relative normal velocity of approach, n; are the components of the unit normal to the
contact area (see Fig. la), and g is the rate of change of the gap Ag. In other words, the entire relative
normal velocity does not contribute to the mass flux when these two points come into contact; part of it
goes toward bridging the gap. Of course, for points that are already in contact, Ag = 0, g = 0, /(s) = v,(s),
and thus the entire relative normal velocity v, results in a change of the volumetric flux. In this case, one
recovers the form of the matter conservation equation employed by Needleman and Rice (1980) in their
study of diffusive cavitation along grain boundaries.

+h(s) = 0. (5)
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Fig. 1. (a) The interparticle contact area: s is the arclength, n is the unit normal vector, o, is the normal stress, jj, is the volumetric flux
and Ag(s) is the non-negative gap function. (b) Sign convention for curvature on the pore surface: k is negative if the center of
curvature is in the region occupied by the particle (pore is concave) and correspondingly the stress is compressive.

Along the pore surface, matter conservation dictates that

djgis) +a(s) =0, (7)

where d(s) is the local particle expansion rate (Fig. 2), measured normal to the particle surface, and is
positive when matter is deposited on the pore surface and negative when the pore surface is eroded. Here it
should be emphasized that though the rate & relates to the flux on the pore surface just as the normal
relative velocity v, does to the flux on the interparticle contact areas, ¢ is not the velocity of any material
point on the pore surface; it is simply the rate at which mass is added to or removed from the pore surface.

Equilibrium at any arbitrary point on the pore surface is described by the standard Laplace equation
(Gurtin and Murdoch, 1975; Rice and Chuang, 1981; Freund et al., 1993) that relates the normal stress o,
in the adjoining bulk material to the local curvature k

an(s) = 7pk(s)- (8)

In the present model, surface tension y, is assumed to be constant and therefore, the tangential stress on the
pore surface is zero (Rice and Chuang, 1981; Freund et al., 1993). The sign conventions for curvature and



S.J. Subramanian, P. Sofronis | International Journal of Solids and Structures 38 (2001) 7899-7918 7903

Dillusion along

interparticle area DE, S,
D

E=-¢ e Elasticity j

Power-law creep

he—|
L] Diffusion along pore
surface CD, §,
he—]
v -
] */\J Particle expansion o

due to mass deposition

B 2 c (s

Diffusion along
interparticle area BC, S,

Fig. 2. Definition of the domain and boundary conditions for the unit cell.

normal stress are shown in Fig. 1b. At the junction between the interparticle contact area and the pore
surfaces (tip), both volumetric flux and chemical potential are continuous. Chemical potential continuity
requires that

0o = Vpk07 (9)

where the subscript 0 is used to denote values of ¢, and k at the junction.

3. The unit cell model

Due to the symmetry of the square particle arrangement, the densification is studied by considering the
deformation of just one quadrant of the cylinder as shown in Fig. 2. (Though it is sufficient to consider one-
eighth of the circle for the present loading case, the current unit cell has been chosen in order to accom-
modate the more general case of unequal applied principal loads.) This particular choice has been made in
view of the fact that the unit normals to the contact areas are known a priori. This offers a significant
simplification with respect to the numerical evaluation of the contact areas and reduces the number of
iterations and computation time considerably. The study of the densification process is carried out by
considering the following two coupled problems concurrently (Fig. 2): (i) the bulk deformation of the
particle that also involves the interparticle contact area evolution along with interparticle diffusion, and the
effect of the pore surface stress induced by the curvature; and (ii) the pore surface diffusion for the calcu-
lation of the particle expansion a(s) along the pore surface.
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3.1. Deformation of the particle

Extending the formulation of Needleman and Rice (1980) to include the effects of stress induced by pore
surface curvature, one can state the principle of virtual power for the deformation of the particle (Fig. 2) in
the following form:

/ T,«Bvids:/a,-j?)é,:,-dA+/ an8hds+/ 0y OUp ds + 7, 8a; — 7, (dvgip €OS ) + 7y, 8

Sr A S Sp

— (804 cOS @) . (10)

Here T; is specified traction on the external boundary Sy of the unit cell, 6;; are the stress components within
the bulk region A occupied by the particle, dv; is an arbitrary virtual variation of the velocity on Sy and in
A, &¢; is the corresponding strain rate variation, ¢, is the normal stress either on the interparticle area
Sy = Sb1 U Sk, or the pore surface area S, (that is the boundary S-Sr—S, of the particle deforming by
elasticity and creep before the deposition of the mass transported by surface diffusion, (Fig. 2)), dv, is the
virtual variation of the normal velocity of points on the pore surface Sp, 8h is the virtual rate of 4 along
contact area Sy = Sp; U Sy, such that 84 = v, + 3¢ = dv, (see Eq. (6)) since the gap Ag(s) is a fixed part of
the particle geometry at any instant of time, and ¢ and ¢, are the dihedral angles at (tip) points C and D
and are shown schematically as angle ¢ in Fig. 1b. The parameters da; and da, are respectively virtual rates
of change of the two contact areas Sp; and Sy, (equal in the present isostatic simulations), and dvy, is the
virtual relative velocity at the junctions C and D (Fig. 2) tangential to the contact areas, measured positive
if it causes an increase in the area of contact. The algebraic terms in Eq. (10) involving y, and y, represent
the power expended/released as the densification proceeds and matter having energy y, on the interparticle
areas acquires energy y, when deposited on the pore surface. Though the pore surface could change its
length due to tangential stretching, there is no virtual power term associated with this mode of deformation
since the stress tangential to the surface is zero owing to the assumption that the surface tension is constant
over the entire pore surface. In accordance with the definition of S,, the mass deposited on S, by free
surface diffusion (i.e., the mass in the area bounded by S, and the pore free surface S| as shown in Fig. 2) is
not considered as part of the particle bulk area 4, and as such, it is not accounted for in the first integral on
the right hand side of Eq. (10). This approximation is consistent with the small displacement assumption in
the model, that is, the analysis is valid for small relative density changes. However, in view of the marked
effect this accumulated mass has on the pore surface curvature, the normal stress g, along S, (in the third
integral of the right hand side of Eq. (10)) is related through Eq. (8) to the curvature of the pore free surface
Sy, as is configured by the deposited mass and continuously changes with time. As a result, the calculation of
o, along S, depends on both the particle deformation and the particle expansion o, and this couples the
problem (i) for the deformation of the particle to the problem (ii) for the pore surface diffusion.

Starting with Eq. (3) and using the divergence theorem, one can cast the second integral over the area
St = Sp1 U Sp2 on the right hand side of Eq. (10) into

. 1
/ O'nahdS:/ QTbeSdeS+(O—O5jb)D—(O—Osjb)c’ (11)

Sp Sb

where 3, and 8h are virtual fields that satisfy the zero flux condition at points B and E and are related by
ddjy/ds + 8k = 0. Upon substitution of Eqgs. (8) and (11) into Eq. (10), one obtains

. I .. . . .
/ESvids:/aiJ-SsijdA—i—/ ypkﬁvnds—f—/ @—]b5jbds+(0'06]b)D—(O'OSJb)C-i-“/bSal
s A Sp Sy b

7p(OU4ip €OS ) 4 7y, 02 — 7, (SV4ip COS P) . (12)
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By appropriate interpolations, Eq. (12) is converted into a set of non-linear finite element equations (Eq.
(A.5), Appendix A). The contact areas BC and DE (Fig. 2), which are domains for the interparticle dif-
fusion process, are not known beforehand and are determined as part of the solution. The overall solution
strategy is incremental in time and involves assuming a size for the contact areas that is in excess of the
expected. By a Newton iteration scheme (“‘global loop”), the finite element Eq. (A.5) are satisfied at time
tw+1 =ty + At by solving for displacement increments {Au} using the known stresses {¢}, and displace-
ments {u}, at time #,. Then, the contact areas are checked for consistency, i.e., whether nodes assumed to be
diffusive are indeed in contact. If this condition is not met, the assumed size of the contact areas is reduced
by a node and the procedure is repeated until the solution is consistent. In setting up the finite element
equations (A.5) for the displacement increments, the creep strain increment portion of the total strain
increment associated with an assumed displacement increment is unknown. Thus, for such an assumed
displacement increment, a creep strain increment is calculated at each integration station by integrating the
combined elastic, power-law creep constitutive equations through the trapezoidal rule and by using the
Newton iteration method to solve the resulting set of four algebraic equations (“local loop™). These two
iterative schemes, global and local, continue till convergent increments of displacement and creep strain are
obtained, of course, for the assumed contact areas BC and DE. The creep strain rate and displacement
increments at time ¢, are used to initiate the process.

3.2. The pore surface diffusion problem for the calculation of the expansion o(s)

Solution to the problem (i) yields the volumetric flux jc and jp respectively at s = sc and s = sp (see Fig.
2) at time ¢, and the coordinates {X},., = {X}, + {Au} of the nodes on the pore surface S,. These pieces
of information are used to integrate Egs. (4) and (7) to obtain the expansion increments {Ao} at time 7,
such that {a},,, = {a}, + {Aa} and surface S is determined from {X}, | + {«},, (Appendix B).

In summary, the solution to problem (i) enforces equilibrium in the bulk of the particle, ensures the
satisfaction of the diffusion equation (3) on the interparticle boundaries BC and DE, and of the Laplace
relation (8) on the pore surface S,. The solution to problem (ii) ensures mass conservation on the pore
surface as dictated by Eq. (7), as well as enforcement of the pore surface diffusion equation (4) and chemical
potential continuity at the tips C and D (Eq. (9)).

4. Dimensionless groups

Dimensional analysis over the geometric, material, and loading parameters leads to the following di-
mensionless groups:

9b o 9P'Vp
Co''aR’ e = Co'R*

_ _
lpb_o_aR7 l//p_o_aR7 Lo =

(13)

where R is the particle radius, aq is the size of the instantancous elastic contact (Raj, 1974) at t = 0, and g, is
the applied macroscopic stress (Fig. 2).

Clearly, y,, and , represent the strengths of the interface and pore surface tension in relation to the
applied stress. The higher these values are, the larger is the energy required to be delivered by the applied
loads to change the respective areas of these surfaces. Also for a given pore curvature, a higher value of ¥,
implies higher normal stresses in the adjoining bulk material.

Groups y;, and y, can also be arrived at by considering the magnitudes of typical strain rates that are
representative of the three densification processes, namely power-law creep deformation in the bulk, in-
terparticle diffusion, and pore surface diffusion. A measure of the creep strain rate is readily expressed in
terms of the creep modulus and the applied stress through é° = Co’. From Eq. (3), j, & Zy0./a, which
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along with Eq. (5) yields / oc Z,a,/aZ. Then a measure of the strain rate due to interparticle diffusion can be
calculated as & o /R = 0, /alR. Similarly, a measure of the strain rate due to pore surface diffusion can
be expressed as & o< Z,,y,/R*. Then, one readily sees that y, = &,/ and y, = &,/é. Thus, y, and y,
measure respectively the densification strength of the interparticle and surface diffusion processes relative to
the power-law creep process in the bulk. For example, if z, = 10 and y, = 100, one can infer that the
interparticle and pore surface diffusion processes are respectively one and two orders of magnitude faster
than the power-law creep process.

Characteristic time scales for each of the three rate mechanisms can be defined by considering the time
required for each process to yield a strain equal to a reference strain, which is chosen as the elastic strain
g./E (where E is the Young’s modulus) corresponding to the applied stress a,. Thus, the following char-
acteristic times can be defined respectively for power-law creep, interparticle diffusion and pore surface
diffusion
& 0./E 1 & aR & Rlo,

fe=— =—= =

= - f=—
& Col ECor!’

& IoET T g, ZoEy, (14)

5. Numerical results

A notable feature of the present formulation is that if the interparticle diffusion coefficient is assumed to
have a very small value, the free surface diffusion coefficient is set equal to zero, and the effects associated
with y;, and y, are neglected, it is equivalent to a penalty method treatment for the solution of the contact
problem. This feature was employed to calculate the elastic solution at time ¢ = 0, which serves as the
starting point for the subsequent time-dependent deformation of the unit cell. In order to validate this
penalty method, the problem of contact between two spheres deforming by pure power-law creep (elasticity
and diffusion processes were switched off) was studied under axisymmetric deformation (see inset of Fig. 3).
The finite element results for creep exponent n = 3 were compared with those of Storakers et al. (1999) who
investigated the viscoplastic contact between two spheres. Storakers et al. (1999) described the time-
dependent contact evolution through two scaling laws, which in the case of pure creep specialize to
F = Q(n) h'~V/?"h'/" and a® = hRc?, where F is the applied force, 4 is the distance of approach of the centers
of the two spheres and / its time rate of change, « is the radius of the contact zone, R is the undeformed
radius of the sphere (see inset of Fig. 3), Q(n) = n(l +2/n)272/"31=2/nC-n2+/nRI=1/2n " and
c? = 1.43e7%7/"_ Fig. 3 illustrates the comparison between the finite element results of the present study as a
function of @ and those obtained by Storakers et al. (1999). Clearly, the present finite element code re-
produces the results of Storakers et al. (1999) fairly accurately.

For times ¢ > 0, the solution to the unit cell problem (problems (i) and (ii)) was obtained by the pro-
cedure outlined in Section 3 and macroscopic quantities such as density and densification rate were cal-
culated. Eight-noded isoparametric elements were used with a 2 x 2 rule for integration of the stiffness
matrices. The incompressibility of the creep deformation was enforced by the method of Nagtegaal et al.
(1974). The mesh used in the calculation had 920 elements and 2481 nodes, out of which 321 nodes were
sequentially numbered and placed along the arc BCDE to discretize the contact areas and the pore surface.

The undeformed particle radius was R = 1 and this corresponds to an initial area fraction of particles of
0.785. With y, = 5000, ¥, = 0.01, v, = 0.003, 0,/E = 0.001, Poisson’s ratio v = 0.33, and creep exponent
n =5, finite element results were obtained for y, = 20 and 108 (very slow and very fast pore surface dif-
fusion as will be discussed below). The applied macroscopic stress state was X, = 2,, = —a, as shown in
Fig. 2. The initial marching time step was At =5 x 107>, and as the powder aggregate relaxed and
densified, the magnitude of the time step was progressively increased. Calculations were carried out till the
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Fig. 3. Contact between two spheres deforming only by power-law creep. Creep exponent n =3, Q(n) = n(1 +2/n)27"31-2/n x
C—]/:xcl+l/nRI—l/2n’ and CZ — ].436_0'97/".

total elapsed time was equal to ¢t = 60¢,. At this stage, nodal displacements were observed to be quite large
and the present small-displacement scheme with no nodal updating was deemed to be inadequate and
hence, no further computations were carried out. Using Eqs. (13) and (14), one can estimate & /¢° = ¢./t =
1uko/t. Since y, = 5000 and the largest value of ¢/#, is 60, it is to be expected that during the entire range of
deformation considered, the magnitude of the creep strains is small when compared to the elastic strains.
Indeed, even at ¢/t, = 60, the calculated creep strains were negligible in comparison to the total strains at
the integration stations.

For the case y, = 20, the deformed outline of the unit cell at different time instants is shown in Fig. 4.
The interparticle contact areas increase progressively with time and as the particle densifies and the pore
closes, the particle shape is clearly non-circular. In contrast, calculations with y, = 10® showed that the
particle always maintains its circular shape, suggesting that y, = 108 represents extremely fast surface
diffusion. Attention should be drawn to the fact that the observed particle shape evolution results from the
action of the interparticle stress gradients and the resulting mass flow toward the pore surface. These
gradients are set by the interaction between the particle deformation and the diffusive relaxation along
contact areas and pore surface.

Figs. 5 and 6 show the flux profiles on the interparticle contacts and pore surface as functions of the arc
length s at various values of the normalized time ¢/#, for y, = 20 and 108 respectively. Note that s = 0 at
point B, s = sy, at point E (Fig. 2), and the flux is normalized by a reference value j.of = P40, /Smax. At the
earlier stages, the flux gradient at point C and in its neighborhood on S, is positive (negative at D) due to
the fact that Z,dk/ds is greater (less) than 2, do,/ds at C (D). As the contact areas increase, this trend is
reversed at the later stages since the demand for mass by the pore surface decreases. As a result, the peaks in
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Fig. 4. Deformed outline of the unit cell when pore surface diffusion is slow: y, = 5000, x,, = 20, ¢, = 0.01, y,, = 0.003, 0./E =0.001,
n=>5andv=0.33.
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Fig. 5. Flux on the interparticle contact areas and pore surface when pore surface diffusion is slow: y, = 5000, ¥, = 20, ¥, = 0.01,
Y, = 0.003, 6,/E = 0.001, n =5, and v = 0.33. Notice that j = j, on Sy, j = j, on S,, and jier = Z104/Smax-
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Fig. 6. Flux on the interparticle contact areas and pore surface when pore surface diffusion is extremely fast: y, = 5000, y, = 108,
¥, = 0.01, Y, = 0.003, 6,/E = 0.001, n = 5, and v = 0.33. Notice that j = j, on S, j = j, on Sy, and jrer = P04 /Smax-

the magnitude of the volumetric flux coincide with the location of the boundaries of the interparticle areas
(that is, points C and D). Note that the midpoint of the pore is a point of reflection for the flux profiles. The
anti-symmetry of the flux profiles about s = s;,.x/2 derives from the hydrostatic compaction state, that is,
equal amounts of mass diffuse out of the two contact areas BC and DE toward the pore surface. Both sets
of flux profiles flatten out as time elapses, and this is again in accordance with diffusion-induced relaxation
whereby the gradients in stress and curvature reduce with time, thus resulting in less amounts of volumetric
diffusion. In the fast surface diffusion case (y, = 10%), matter transport occurs over the entire pore surface
whereas in the case of y, = 20, mass transport is restricted to regions near the tip points C and D (Fig. 2)
and flux is negligible over the rest of the pore surface. This almost total inability of the pore surface dif-
fusion to redistribute evenly the incoming flux implies that y, = 20 represents very slow surface diffusion.

In Fig. 7, the normalized curvature k/(1/R) of the pore surface is shown plotted against normalized
arclength s/sy,; at various instants of time for the slow surface diffusion case %y = 20. As expected, a
symmetric variation about the midpoint is observed and significant curvature gradients persist since slow
surface diffusion cannot neutralize them. Also the range of curvature values gradually decreases with time
under the action of the surface diffusion process. It is worth mentioning that at time ¢ = 0.006#, the pore
surface profile changes from concave (k < 0) to convex and back to concave as one moves away from the
tip (C or D) along the pore surface. A close-up of the pore surface profile near the boundary of the in-
terparticle contact area (tip points C and D) at the very early stages of densification (¢ = 0.00015#, and
t = 0.01z,) is shown in Fig. 8. As has already been discussed, while almost the entire pore surface S, away
from the tips is concave (see Fig. 7), there exist regions near the tips at the very early stages of the den-
sification where the curvature reverses sign. The top inset in Fig. 8 shows a photograph of a sintered array
of Cu wires reproduced from Alexander and Balluffi (1957), showing pores with both concavely and
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Fig. 7. Variation of pore surface curvature when surface diffusion is slow: y, = 5000, y, = 20, ¥, = 0.01, y, = 0.003, ¢,/E = 0.001,
n=2>5,and v=0.33.

convexly curved regions. Thus, the present method qualitatively captures experimentally observed features
at the microscale. As also seen from Fig. 7, finite element calculations at later stages (¢ > 0.01%,) show no
such curvature reversal and that the pore surface is always concave (k < 0). No curvature reversal occurred
at any time in calculations with extremely fast pore surface diffusion (e.g., x, = 10%) and the pore surface
was uniformly concave over the entire surface.

The relative density D of the powder compact was calculated by determining the area fraction occupied
by the particles. The calculated evolution of relative density with time is shown in Fig. 9 for y, = 20, 1000,
and 10® while all other parameters were held fixed. As expected, greater densities are achieved for the same
elapsed time when the surface diffusion is faster.

5.1. Comparison with other models

Hsueh and Evans (1981) and Riedel (1990) studied the compaction of hexagonal arrays of wires (2-D
model) deforming by interparticle diffusion alone under the assumption of equilibrium-shaped pores and
plane strain conditions. The corresponding predictions of densification rate are expressed by Eq. (17) in
Hsueh and Evans (1981) and Eq. (2) in Riedel (1990). Svoboda and Riedel (1995) extended the work of
Riedel (1990) to include the effect of coupled surface and interparticle diffusion, and derived an analytical
approximation for the case of a pore with equilibrium shape given by their Eq. (23).

The densification rates predicted by the present model were calculated numerically from the D vs. z data
(Fig. 9). These results along with those of Hsueh and Evans (1981), Riedel (1990), and Svoboda and Riedel
(1995) are summarized in Fig. 10. As seen from Fig. 10, the Svoboda—Riedel model yields virtually the same
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Fig. 8. Magnified view of pore profile near the tip when surface diffusion is slow (y, = 20). Top inset shows experimentally observed
curvature reversal in Cu wires (reprinted from Acta Metallurgica 5 (11), B.H. Alexander and R.W. Balluffi, “The mechanism of sin-
tering of copper’, 666—677, copyright 1957, with permission from Elsevier Science) and the bottom inset shows the region that has been
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densification rates for the three values of y, for the range of densities studied, indicating that it has a very
weak dependence on surface diffusivity for the model parameters used.

The present investigation yields densification rates that are initially greater than those of the interparticle
diffusion models, but rapidly decreasing as D increases. The very high densification rates during the early
stages (low relative density) in the present investigation result from the rapid interparticle diffusion set up
by the severe initial stress gradients. Those gradients are smaller in the Svoboda—Riedel model (see Fig. 11)
since the contact size between the particles predicted by the Svoboda—Riedel model is greater than the
calculated in the present investigation at a given relative density D and applied load o,. It is emphasized
that the contact size in the present study is calculated as part of the solution to the entire initial-boundary
value problem, whereas in the Svoboda—Riedel model the contact zone is calculated exclusively from the
relative density and the dihedral angle (see their Eq. (15)). Also note that the uniform curvature of the
assumed equilibrium shape for the pore in the Svoboda—Riedel model does affect the geometric calculation
of the relative density, whereas in the present calculation there is no predetermined relationship between the
curvature and the relative density.

As densification proceeds and the diffusional relaxation mechanisms tend to both weaken and neutralize
these gradients (Fig. 11), the diffusion processes decelerate (see Figs. 5 and 6) and the densification rates
drop to lower levels. The results of Fig. 10 for the small range of calculated relative densities,
0.79 < D £ 0.83, seem to indicate that the predicted densification rates of the present study tend to approach
those of boundary diffusion models at higher densities. Indeed the corresponding calculated values of
the contact zone size in the present study also tend to those of the Svoboda—Riedel model as the density
increases.
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Fig. 11. Comparison of normal stress gradients on the interparticle contact area obtained from the present investigation with those
predicted by the analytical model of Svoboda and Riedel (1995): y, = 5000, %, = 20, Y, = 0.01, i, = 0.003, ¢,/E = 0.001, n = 5, and
v = 0.33. Here s is arclength and a is the size of the contact zone.

6. Discussion

For a case of slow pore surface diffusion (j, = 5000, y, = 20), the pore curvature profile shows multiple
extremum points during the early stages of densification (Fig. 7). Since the chemical potential is higher on
the pore surface at regions of higher concavity (k < 0) and atoms there tend to move toward regions of
convexity (k> 0) or less concavity, the flux profile changes sign at these extrema (Fig. 5). The surface
diffusion process, though slow, does alleviate the curvature gradients and indeed, at the last time step shown
in Fig. 7, there is only one peak value. On the other hand, in the case of extremely fast pore surface diffusion
(%, = 5000, y, = 10*) the curvature was found to be almost uniform over the entire pore surface with
nearly negligible gradients. However, the extremely high value of the surface diffusion coefficient still en-
sures substantial mass flow (see Eq. (4)) over the pore (Fig. 6).

When the surface diffusion is fast (y, = 5000, y, = 10%), the present calculations demonstrate that the
particles deform as truncated cylinders since the pore surface was found to be of uniform concave cur-
vature. On the other hand, Bouvard and McMeeking (1996) state, on the basis of their numerical studies,
that even in the case of fast surface diffusion the particle surface in their axisymmetric model is not
spherical. They drew this conclusion on the premise that ¢ = 2,/%, = 0.02 represented the fast pore
surface diffusion limit in their calculations. Notice that the parameter ¢ of Bouvard and McMeeking can be
rewritten in terms of the dimensionless groups of the present study as & = xblppaé / XPRZ. Taking into ac-
count that i, = 0.01, one finds that the Bouvard and McMeeking fast surface diffusion limit corresponds to
a /1, value of 1000 in the present investigation. Clearly, Fig. 5 indicates that even a y,/y, value of 250,
which depicts pore surface diffusion faster than the fast pore surface diffusion limit of Bouvard and
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McMeeking, actually corresponds to slow pore surface diffusion since mass transport away from the tips is
not substantial. Hence, it appears that the calculations of Bouvard and McMeeking at ¢ = 0.02 do not
describe densification occurring at the fast surface diffusion limit, since those, according to the present
study, would correspond to ¢ = 10~°. Of course, the Bouvard and McMeeking conclusion on the particle
shape is correct at slow surface diffusion as the present study affirms (Figs. 4 and 8).

Certain models (e.g., Mullins, 1993; Riedel et al., 1994b; Zhang and Schneibel, 1995; Bouvard and
McMeeking, 1996) for sintering provide solutions for the pore shape based on the important assump-
tion that the equilibrium value for the dihedral angle, ¢,, = arc cos(y,/2y,), is always maintained at the
tip. However, the angle at the tip equals ¢, only when thermodynamic equilibrium is attained. In the
case of sintering in the absence of external loads with no bulk deformation effects, which is the case
considered by the classical models, thermodynamic equilibrium is indeed attained and the tip angle is
dynamically maintained at its equilibrium value when surface diffusion is slow, as indicated by experi-
ments by Wong and Pask (1979). On the other hand, in the case of pressure-assisted densification of
particles that deform by means of mechanisms such as elasticity and power-law creep, there is no guarantee
that the system achieves thermodynamic equilibrium as long as loading is maintained. In fact even in the
case of pressureless sintering, when surface diffusion is fast the dihedral angle changes continuously with
deformation as demonstrated in the experiments of Wong and Pask (1979) and discussed by Hoge and
Pask (1977). Furthermore, the equilibrium angle in classical theory derives from a balance of grain
boundary and surface tension (Herring, 1951) at the tip, and it does not account for energy associated with
the adjacent elastically deforming material. In the present model, the customary local energy balance at the
tip from which the equilibrium dihedral angle is calculated forms a part of the overall virtual power
equation (algebraic terms of Eq. (12)). Thus, the present model makes no assumptions regarding the di-
hedral angle at the tip, thus accounting for a more general situation. Lastly, it is worth mentioning
that several of the models in the literature do not enforce the dihedral angle (e.g., Kuczynski, 1949; Ashby,
1974; Bross and Exner, 1979; Exner, 1987, McMeeking and Kuhn, 1992) whereas others strictly enforce
it (e.g., Mullins, 1993; Riedel et al. 1994b; Zhang and Schneibel, 1995; Bouvard and McMeeking,
1996).

7. Closure

Densification of a powder aggregate is a complex physical phenomenon involving multiple mechanisms
characterized by a large number of material and geometric parameters. In the present study, important
dimensionless groups have been identified, leading to a dramatic reduction in the number of case calcu-
lations required to analyze the process.

A finite element scheme has been developed to study the densification of a particle aggregate based on
the interaction between the mechanisms acting at the microscale. In view of the complexity of the governing
equations, one may consider the devised numerical techniques as rather efficient in predicting the values of
both microscopic and macroscopic parameters when pore and particle shape changes are small. For pre-
dictions pertaining to densification at high relative densities (>0.85%), the present model needs to be
modified to account for geometric non-linearities.

Details have been presented on the variation of volumetric flux on the interparticle contacts and pore
surface, and the pore surface curvature. The effectiveness of the diffusion processes in neutralizing stress/
curvature gradients has been demonstrated through model calculations. Available models based on a single
operating mechanism have been shown to underestimate the densification rates during the initial stages of
densification, and the present model has successfully captured the experimentally observed pore curvature
reversal.
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Appendix A. Finite element formulation and solution of the initial boundary value problem for the equilibrium
of the particle (problem (i))

Under plane strain conditions, the interparticle contact areas are assumed to be the two plane segments
BC (X, = —R) and DE (X; = R) of Fig. 2. Arclength s is measured starting from point B and increases
toward point E. The normal n is defined on the contact areas as positive when it points inwards as shown in
Fig. 1a. A non-negative scalar gap function Ag(s) at any point of the pore surface is defined to be its normal
distance from the contact plane. Due to symmetry (v"' = 0, v' = v), Eq. (6) is written ash=uvn, +g,0=1,
2 denoting vector components, and Eq. (5) as

di
Pt v+ = 0. (A1)

Following Needleman and Rice (1980) and employing piecewise linear functions to interpolate the ve-
locities on each contact area, and applying the boundary conditions ji,(sg) = j»(sg) = 0, one can integrate

and cast Eq. (A.1) in finite element form as:

Jols) = {M(s)} {o"} = G(s), (A2)

where {M(s)} is an array whose entries are the integrals of the linear interpolation functions used for the
velocities (Needleman and Rice, 1980; Sofronis and McMeeking, 1994), {vN} is the array of nodal velocities
along the contact area, and G(s) is a function of the gaps over the contact area (Subramanian and Sofronis,
1999).

If As is an infinitesimal segment of S, subjected to an infinitesimal virtual normal displacement du,, then,
it can be readily shown that & du,As = 6(As). Thus, in finite element notation,

Np—1
/ypkBUnds=/ ppdds =" "y,80,
Sp Sp i=1

where N, is the number of nodes on S, and /; is the length of the segment connecting nodes i and i + 1. With
the help of simple geometric analysis, one obtains 8/, = {8uN}'{P,}, where {P} is a function only of the
geometry of the pore at nodes i and i + 1, and {8vN}' = [0/, 8vj, 8vj™!, 8v!]. Therefore,

Np—1

/S 7ok S0, ds = ypZ{auN}T{P,.}. (A.3)

Similarly, the algebraic terms of Eq. (12) are written as
{8MYH{E ), (A4)

where {F,} is a function of y,, 7,, and the tip angles at C and D; and {8v™}" = [8v}, 8, 50D, 8u%].

Setting {v"} = {AuN}/At, employing the standard interpolation matrices [4] for the velocity and [B] for
the strain-rate inside the particle A, and substituting Egs. (A.2), (A.3), and (A.4) into the governing Eq.
(12), yields the non-linear finite element equations
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[l oran+ (o [ OrHME) ar) ) = (7). (A3)
where {F} is the force vector given by
(1= [ G as s [ Uryas - 358 - () - oy o)
+ (o) MG50)) (A6

The set of equations (A.5) is solved using a Newton iteration scheme, details of which can be found in
Subramanian and Sofronis (1999).

Appendix B. Calculation of expansion a of the pore surface S, (problem (ii))

Expansions {a}, at time ¢, are known as well as the volumetric flux jc and jp at time #,,, respectively at
s = sc and s = sp (see Fig. 2) and the coordinates {X},,, = {X}, + {Au} of the nodes on the pore surface
S, from the solution to problem (i). The solution for the expansions {«},,, at time #,,, is sought such that

{0 = {ofy + {Aa}.

Backward Euler integration of the mass conservation Eq. (7) yields
Jo(s)At = jcAt —/ Aa(s')ds'. (B.1)
sc
Linear shape functions ¢,(s) are used to interpolate the expansion increments as Aa(s) = vaz”l o:(s)An

where Ag; are the nodal expansion increments, and N, is the total number of nodes along S;. Thus, Eq. (B.1)
is recast as

Jp(8)At = jcAt — im,—(s)Acx,-, (B.2)

i=1

which at s = sp yields

Np
JoAt = jeAt = my(sp)Ao;. (B.3)

P
The curvature k; at nodal position i at time ¢, is expressed as k; = k(&' &, &), where
&= (X)’)n + Au — (oc,-)an = (X’)H] (o) 1. — Aoyn’. = & — Aoy, (B.4)

r = 1,2 stands for components, &. are known, and no summation is implied over the repeated index i. A
linear approximation of k; about the known value &, = k; (&', &, &) yields

r r)er
il ak
1

ki:l;iJrZaOCI

I=i—1

A, (B.5)

n+1

and approximation of dk/ds at the midpoint between nodes i and i+ 1 by a difference scheme as
Ak/As = (ki — k;)/(si1 — s;) furnishes

Ak 2 Ok
As  As ( k+z ooy

Substituting Eq. (B.6) into Eq. (4) and combining it with Eq. (B.2), yields

Acx;) (B.6)

n+1 J=i—1
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jp(MITﬂ)At:]’CAt_ %mi(%ﬂ)A%

i=1

_ Vpgp Ak + liz:akiﬂ
I=i

AO([ — Z — AO([ . (B7)

n+1 I=i—1

As ooy

Equation (B.7) represent the enforcement of Egs. (4) and (7) at the midpoints of the segments between the
N, pore surface nodes. These N, — 1 equations combined with Eq. (B.3) yield a system of N, equations for
the N, unknown values of Ag;. This system was solved under the constraint that the symmetry of the unit
cell be maintained.
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